ALMOST SYMMETRIC NUMERICAL SEMIGROUPS OF
MULTIPLICITY 5

Hirokatsu NARI*, Takahiro NUMATA* and Kei-ichi WATANABE**

(Received October 31, 2011)

ABSTRACT. In this paper, we study almost symmetric numerical semigroups of multiplicity 5. We give a classification of almost symmetric numerical semigroups of multiplicity 5 with embedding dimension 4.

1. INTRODUCTION

Throughout this paper, let \(\mathbb{N} \) denote the set of nonnegative integers. A numerical semigroup \(H \) is a subset of \(\mathbb{N} \) that is closed under addition, contains the zero element and has finite complement in \(\mathbb{N} \). A numerical semigroup \(H \) always admits a finite system of generator: that is, there exist integers \(n_1, ..., n_r \) such that
\[
H = \langle n_1, ..., n_r \rangle := \{ \lambda_1 n_1 + \cdots + \lambda_r n_r \mid \lambda_1, ..., \lambda_r \in \mathbb{N} \}.
\]
Moreover, every numerical semigroup \(H \) has an unique minimal system of generators \(n_1, ..., n_b \), where the number \(b \) is called embedding dimension of \(H \). The least positive integer belonging to \(H \) is called the multiplicity of \(H \) and is denoted by \(e(H) \). In general, it holds that \(b \leq e(H) \). The Frobenius number of \(H \) is the maximum integer not belonging to \(H \), which is denoted by \(F(H) \). We always let the notation \(H = \langle n_1, ..., n_r \rangle \) denote a numerical semigroup minimally generating by \(\{ n_1, ..., n_r \} \), that is, \(r \) is the embedding dimension of \(H \).

For a numerical semigroup \(H = \langle n_1, ..., n_r \rangle \), we put \(k[H] := k[t^h \mid h \in H] \), where \(k \) is any fixed field and \(t \) a variable over \(k \). \(R = k[H] \) is called a numerical semigroup ring of \(H \) which has a graded ring structure the natural way (see [H]) and \(R \) has unique homogeneous maximal ideal \(m := (t^{n_1}, ..., t^{n_r}) \). It is known that \(a(R) = F(H) \), where \(a(R) \) is the a-invariant of \(k[H] \) (see [GW]). The multiplicity of \(R \) will be denoted by \(e(R) \). Then we have \(e(R) = e(H) \) and \(m \) denotes the number of minimal generating system for \(m \).

A numerical semigroup \(H \) is symmetric if for any integer \(x \in \mathbb{Z} \), either \(x \in H \) or \(F(H) - x \in H \). If \(H \) is symmetric, then \(F(H) \) must be odd by definition. A numerical semigroup \(H \) is pseudo-symmetric if \(F(H) \) is even and for any \(x \in \mathbb{Z} \)\((F(H)/2) \), either \(x \in H \) or \(F(H) - x \in H \). In [BF] the authors introduced a larger class of semigroups than symmetric or pseudo-symmetric. This class is called almost symmetric (see Definition 2.5). It is known that \(H \) is almost symmetric numerical semigroup if and only if \(k[H] \) is almost Gorenstein ring (see [BF]).

Let \(H = \langle n_1, ..., n_r \rangle \) be a numerical semigroup and \(S = k[X_1, ..., X_r] \) a polynomial ring in \(r \) variable over a field \(k \). Then we let \(I \) be the kernel of the homomorphism \(\phi : S \rightarrow k[H] \) of \(k \)-algebras defined by \(\phi(X_i) = t^{n_i} \) for each \(0 \leq i \leq r \). Then \(I \) is
called the *defining ideal* of \(H \). We denote by \(\mu(I) \) the number of minimal generators of \(I \).

When the embedding dimension \(r = 3 \), J. Herzog in \([H]\) gave a complete characterization of the defining ideal \(I \), and he has proved that \(\mu(I) \leq 3 \). When \(r = 4 \) and the numerical semigroup \(H \) is symmetric, H. Bresinsky in \([B]\) gave a complete description of the defining ideal \(I \). In particular, he has proved that \(\mu(I) \leq 5 \).

The purpose of this paper is to make the complete list of numerical semigroups \(H = \langle 5, b, c, d \rangle \) which are almost symmetric. This is done in Theorem 3.3 and we see that \(\mu(I) = 5 \) if \(H \) is pseudo-symmetric and \(\mu(I) = 6 \) if \(H \) is almost symmetric with \(t(H) = 3 \).

2. PRELIMINARIES

In this section, we recall some definitions and basic facts about numerical semigroups and numerical semigroup rings.

Definition 2.1. Let \(H \) be a numerical semigroup.

1. We say that an integer \(x \) is a *pseudo-Frobenius number* if \(x \not\in H \) and \(x + h \in H \) for all \(h \in H \setminus \{0\} \). We denote by \(\text{PF}(H) \) the set of pseudo-Frobenius numbers of \(H \).

2. The cardinality of \(\text{PF}(H) \) is called the *type* of \(H \), denoted by \(t(H) \).

From the definition it easily follows that \(F(H) \in \text{PF}(H) \), in fact it is the maximum of \(\text{PF}(H) \).

Proposition 2.2. Let \(H \) be a numerical semigroup and \(R = k[H] \) its semigroup ring with unique homogeneous maximal ideal \(m \). Then

1. \(r(R) = t(H) \), where \(r(R) \) denote the Cohen-Macaulay type of \(R \).
2. \(a(R) = F(H) \).

Proof. Since the local cohomology module \(H^1_m(R) \) is generated by \(\{t^m \mid m \in \mathbb{Z} \setminus H\} \) as \(R \)-module, \(\{t^x \mid x \in \text{PF}(H)\} \) generates the socle of \(H^1_m(R) \). Hence we have \(r(R) = t(H) \) and \(a(R) = F(H) \).

The Apéry set is the key tool throughout this paper.

Definition 2.3. Let \(H \) be a numerical semigroup and \(n \) be one of its nonzero elements. The *Apéry set* of \(n \) in \(H \) is

\[
\text{Ap}(H, n) = \{ h \in H \mid h - n \not\in H \}.
\]

In another words, \(\text{Ap}(H, n) = \{0 = \omega(0), \omega(1), ..., \omega(n-1)\} \), where \(\omega(i) \) is the least element of \(H \) congruent \(i \) modulo \(n \), for all \(i \in \{0, ..., n-1\} \). It is also clear that \(F(H) = \max \text{Ap}(H, n) - n \) by the definition. More generally, we can get pseudo-Frobenius numbers of \(H \) from the Apéry set by the following way: Over the set of integers we define the relation \(\leq_H \), that is, \(a \leq_H b \) implies that \(b - a \in H \). Then we have the following result (see \([RG2]\)).

Proposition 2.4. Let \(H \) be a numerical semigroup and let \(n \) be a nonzero element of \(H \). Then

\[
\text{PF}(H) = \{ \omega - n \mid \omega \text{ is maximal with respect to } \leq_H \text{ in } \text{Ap}(H, n) \}.
\]
The concept of almost symmetric numerical semigroup was defined by Barucci and Fröberg in [BF].

Definition 2.5. [BF] We say that H is an almost symmetric numerical semigroup if $z \not\in H$ implies that either $F(H) - z \in H$ or $z \in PF(H)$.

By Definition 2.5, a numerical semigroup H is pseudo-symmetric if and only if H is almost symmetric with $t(H) = 2$.

We set $PF(H) = \{f_1 < f_2 < \cdots < f_{t(H)} = F(H)\}$. In [N] it was proved that H is almost symmetric if and only if $f_i + f_{t(H)-i} = F(H)$ for all $i \in \{1, 2, \ldots, t(H) - 1\}$.

Theorem 2.6. [N] Let H be a numerical semigroup and let n be one of its nonzero elements. Set $Ap(H, n) = \{0 < \alpha_1 < \cdots < \alpha_m\} \cup \{\beta_1 < \beta_2 < \cdots < \beta_{t(H)-1}\}$ with $m = n - t(H)$ and $PF(H) = \{\beta_i - n, \alpha_m - n = F(H) \mid 1 \leq i \leq t(H) - 1\}$. We put $f_i = \beta_i - n$ and $f_{t(H)} = \alpha_m - n = F(H)$. Then the following conditions are equivalent to each other.

1. H is almost symmetric.
2. $\alpha_i + \alpha_{m-i} = \alpha_m$ for all $i \in \{1, 2, \ldots, m - 1\}$ and $\beta_j + \beta_{t(H) - j} = \alpha_m + n$ for all $j \in \{1, 2, \ldots, t(H) - 1\}$.
3. $f_i + f_{t(H)-i} = f_{t(H)}$ for all $i \in \{1, 2, \ldots, t(H) - 1\}$.

Remark 2.7. When H is symmetric or pseudo-symmetric, the equivalence of (1) and (2) is shown in [RG2] Proposition 4.10 and 4.15.

By using Theorem 2.6, it is easy to show that a numerical semigroup H is almost symmetric if and only if $2g(H) = F(H) + t(H)$ (see [BF]). Hence H is almost symmetric with even-type (resp. odd-type) implies $F(H)$ is even integer (resp. odd integer).

Let I be the defining ideal of $R = k[H]$. Namely $R = k[X_1, \ldots, X_r]/I$, of $H = \langle n_1, \ldots, n_r \rangle$.

Proposition 2.8. Let $H = \langle n_1, \ldots, n_r \rangle$ be a numerical semigroup and I its defining ideal. Then I is generated by homogeneous binomials

$$f(u, v) = \prod_{i=1}^{r} X_i^{u_i} - \prod_{i=1}^{r} X_i^{v_i},$$

where $u_i v_i = 0$ and $\deg f = \sum_{i=1}^{r} u_i n_i = \sum_{i=1}^{r} v_i n_i$.

Our goal is to study almost symmetric numerical semigroups of multiplicity 5 with embedding dimension 4. We have classified pseudo-symmetric numerical semigroups with embedding dimension 3 in [NNW]. Also, we show the classification of almost symmetric semigroups of multiplicity ≤ 4 in the following Remark. Then we will have the classification of all almost symmetric semigroups of multiplicity ≤ 5.

Remark 2.9. Let $H = \langle a, b, c, d \rangle$ be a numerical semigroup with multiplicity a and generated by 4 elements. Then $a \geq 4$ and if $a = 4$, then $t(H) = 3$ and $Ap(H, 4) = \{0, b, c, d\}$. Using Theorem 2.6, it is easy to see that H is almost symmetric if and only if after change of variables, $b = 2\alpha + \beta + 1$, $c = 2\beta + 2$, $d = 2\alpha + 3\beta - 1$, where α (resp. β) is any positive (resp. even positive) integer.
3. Main Theorem

Let $H = \langle 5, b, c, d \rangle$ be a numerical semigroup of multiplicity 5. First we show that $t(H) \leq 3$.

Lemma 3.1. Let $H = \langle 5, b, c, d \rangle$ be a numerical semigroup of multiplicity 5. Then $t(H) \leq 3$.

Moreover, if $t(H) = 3$ and if we put $\text{Ap}(H, 5) = \{0, b, c, d, \omega\}$, then $\omega = 2d$ after rearranging $\{b, c, d\}$.

Proof. Set $\text{Ap}(H, 5) = \{0, b, c, d, \omega\}$. Since ω is not a minimal generator of H, one of $b, c, d \leq_H \omega$ in the notation of Proposition 2.4. Hence at least one element among $\{b, c, d, \omega\}$ is not maximal with respect to \leq_H and $t(H) \leq 3$ by Proposition 2.4.

If $t(H) = 3$, then only one element among $\{b, c, d, \omega\}$, say, d is $\leq_H \omega$. Hence $\omega = nd$ for some $n \geq 2$. If $n \geq 3$, then b or $c \leq_H 2d \leq_H \omega$. Hence $\omega = 2d$. □

The following lemma characterizes almost symmetric numerical semigroups of multiplicity 5 with embedding dimension 4.

Lemma 3.2. Let $H = \langle 5, b, c, d \rangle$ be a numerical semigroup of multiplicity 5. Then

1. H is pseudo-symmetric if and only if $5 + b + c = 2d$ after permuting b, c and d if necessary.
2. H is almost symmetric with $t(H) = 3$ if and only if $b + c = 2d + 5$ after permuting b, c and d if necessary.
3. H is symmetric if and only if $b + c = 2d$ if necessary.

Proof. The statements (1) and (3) are Proposition 4.10 and 4.15 of [RG2]. But we reproduce the proof for the convenience of readers. We put $\text{Ap}(H, 5) = \{0, b, c, d, \omega\}$ throughout the proof.

(1) Assume $\text{PF}(H) = \{d - 5, F(H)\}$ with $F(H) = 2(d - 5)$. Then, since $b - 5, c - 5 \leq_H F(H)$ by Proposition 2.4. Hence we must have $F(H) = \omega - 5 = 2(d - 5)$ and $\omega = b + c$.

(2) If $t(H) = 3$, by Lemma 3.1 we may assume that $\omega = F(H) + 5 = 2d$ and $\text{PF}(H) = \{b - 5, c - 5, 2d - 5\}$. We see from Theorem 2.6 that H is almost symmetric if and only if $b + c = 2d + 5$.

(3) Again by Proposition 2.4, we must have $b, c, d \leq_H F(H) + 5$ and hence $\omega = F(H) + 5$. □

Now we can prove our main theorem.

Theorem 3.3. Let $H = \langle 5, b, c, d \rangle$ be a numerical semigroup of multiplicity 5. Then after suitable permutation of $\{b, c, d\}$, we have the following expressions.

1. H is pseudo-symmetric if and only if

\[
\begin{align*}
b &= 3\alpha + 2\beta + 1, \\
c &= \alpha + 4\beta + 2, \\
d &= 2\alpha + 3\beta + 4,
\end{align*}
\]

where $\alpha, \beta \geq 1$ with $\beta - \alpha \not\equiv 2 \pmod{5}$.

In this case $F(H) = 4\alpha + 6\beta - 2$.

(2) \(H \) is almost symmetric with \(t(H) = 3 \) if and only if
\[
\begin{align*}
b &= 3\alpha + 2\beta - 1, \quad c = \alpha + 4\beta - 2, \quad d = 2\alpha + 3\beta - 4, \\
\text{where } &\alpha \geq 1 \text{ and } \beta \geq 2 \text{ with } \beta - \alpha \not\equiv 3 \pmod{5}.
\end{align*}
\]
In this case \(F(H) = 4\alpha + 6\beta - 13. \)

(3) \(H \) is symmetric if and only if
\[
\begin{align*}
b &= 3\alpha + 2\beta, \quad c = \alpha + 4\beta, \quad d = 2\alpha + 3\beta, \\
\text{where } &\alpha, \beta \geq 1 \text{ with } \alpha \not\equiv \beta \pmod{5}.
\end{align*}
\]
In this case \(F(H) = 4\alpha + 6\beta - 5. \)

Proof. (1) As in Lemma 3.2, put \(\text{Ap}(H, 5) = \{0, b, c, d, \omega\} \) and assume that \(b + d \equiv 0 \pmod{5} \) and \(c + \omega \equiv c + 2d \equiv 0 \pmod{5} \). Then \(2b \equiv c, 2c \equiv d \) and \(c + d \equiv b \pmod{5} \).

Put \(2b = c + 5\alpha \) and \(2c = d + 5\beta \) with \(\alpha, \beta \geq 1 \) and recall that \(2d = b + c + 5 \). Then we get \(b = 3\alpha + 2\beta + 1, c = \alpha + 4\beta + 2, d = 2\alpha + 3\beta + 4 \) and \(F(H) = 2(d - 5) = 4\alpha + 6\beta - 2. \) Note that \(b, c, d \equiv 0 \pmod{5} \) if and only if \(\alpha - \beta \equiv 3 \) and otherwise, \(5, b, c, d \) are relatively prime and \(\langle 5, b, c, d \rangle \) is a numerical semigroup.

(2) As in (1), choose \(b, c \) so that \(b + d \equiv 0 \pmod{5} \) and \(c + \omega \equiv c + 2d \equiv 0 \pmod{5} \) as in (1) and put \(2b = c + 5\alpha \) and \(2c = d + 5\beta \) as well. Then since \(b + c = 2d + 5 \) in this case, we have
\[
\begin{align*}
b &= 3\alpha + 2\beta - 1, \quad c = \alpha + 4\beta - 2, \quad d = 2\alpha + 3\beta - 4 \quad \text{and} \quad F(H) = 2d - 5 = 4\alpha + 6\beta - 13.
\end{align*}
\]
Note that \(b, c, d \equiv 0 \pmod{5} \) if and only if \(\alpha - \beta \equiv 2 \pmod{5} \) and otherwise, \(5, b, c, d \) are relatively prime and \(\langle 5, b, c, d \rangle \) is a numerical semigroup.

(3) As in (1), (2), choose \(b, c \) so that \(b + d \equiv 0 \pmod{5} \) and \(c + \omega \equiv c + 2d \equiv 0 \pmod{5} \) as in (1) and put \(2b = c + 5\alpha \) and \(2c = d + 5\beta \) as well. Then since \(b + c = 2d + 5 \) in this case, we have
\[
\begin{align*}
b &= 3\alpha + 2\beta, \quad c = \alpha + 4\beta, \quad d = 2\alpha + 3\beta \quad \text{and} \quad F(H) = 2d - 5 = 4\alpha + 6\beta - 5.
\end{align*}
\]
Note that \(b, c, d \equiv 0 \pmod{5} \) if and only if \(\alpha \equiv \beta \pmod{5} \) and otherwise, \(5, b, c, d \) are relatively prime and \(\langle 5, b, c, d \rangle \) is a numerical semigroup.

We can give the complete description of the defining ideal of an almost symmetric numerical semigroup of multiplicity 5 with embedding dimension 4.

Corollary 3.4. Let \(H = \langle 5, b, c, d \rangle \) be a numerical semigroup of multiplicity 5 and \(I \) its defining ideal. Then

(1) \(H \) is pseudo-symmetric if and only after permuting variables, if necessary, \(I \) is the form of
\[
I = (X^{\alpha + \beta + 1} - YW, Y^2 - X^\alpha Z, Z^2 - X^\beta W, W^2 - XYZ, X^{\beta + 1}Y - ZW),
\]
where \(\alpha, \beta \geq 1 \) and \(\beta - \alpha \not\equiv 2 \pmod{5} \).

(2) \(H \) is almost symmetric with \(t(H) = 3 \) if and only after permuting variables, if necessary, \(I \) is the form of
\[
I = (X^{\alpha + \beta} - YW, Y^3 - X^\alpha W^2, Z^2 - X^{\alpha + 1}Y, W^2 - X^\beta Z, X^\alpha W - YZ, XY^2 - ZW),
\]
where \(\alpha \geq 1 \) and \(\beta \geq 2 \) with \(\beta - \alpha \not\equiv 3 \pmod{5} \).
(3) \(H\) is symmetric if and only if after permuting variables, if necessary, \(I\) is the form of
\[
I = (X^{\alpha + \beta} - ZW, Y^2 - X^\alpha Z, Z^2 - YW, W^2 - X^\beta Y, X^\alpha W - YZ),
\]
where \(\alpha, \beta \geq 1\) with \(\alpha \neq \beta \pmod{5}\).

Proof. Let \(I\) be the ideals described in (3.4) – (3.6). It is clear from Theorem 3.3 that \(I\) is contained in the defining ideal of \(k[H]\) in each case. Also, we can check that \(\dim_k k[X, Y, Z, W]/(I, X) = 5\), which implies that \(I\) is the defining ideal of \(H\).

Corollary 3.5. Let \(H = \langle 5, b, c, d \rangle\) be a numerical semigroup of multiplicity 5 and \(I\) be its defining ideal.

1. If \(H\) is pseudo-symmetric, then \(\mu(I) = 5\).
2. If \(H\) is almost symmetric with \(t(H) = 3\), then \(\mu(I) = 6\).
3. If \(H\) is symmetric, then \(\mu(I) = 5\).

Question 3.6. Are the results in 3.5 always true for almost symmetric numerical semigroups generated by 4 elements? Namely, assume that \(H = \langle a, b, c, d \rangle\) be an almost symmetric numerical semigroup generated by 4 elements.

1. Is \(t(H) \leq 3\) always?
2. Does \(\mu(I) = 5\) holds if \(H\) is pseudo-symmetric?
3. Does \(\mu(I) = 6\) holds if \(t(H) = 3\)?

Remark 3.7. The results in Corollary 3.5 (1) and (3) follow from Theorem 3.8 of by J. C. Rosales and P. A. García-Sánchez and Theorem 3.9 by H. Bresinsky, respectively, since \(H = \langle 5, b, c, d \rangle\) is not a complete intersection. (If \(k[H]\) is a complete intersection, then \(e(H) \geq 8\).

Theorem 3.8. [RG1] Let \(H = \langle n_1, ..., n_r \rangle\) be a numerical semigroup such that \(r = e(H) - 1 = n_1 - 1\) and \(I\) its defining ideal. Let \(Ap(H, n_1) = \{0, n_2, ..., n_r, \omega\}\).

1. If \(\omega = n_i + n_j\) for some \(i, j \in \{2, ..., r\}, i \neq j\), then
\[
\mu(I) = \frac{(n_1 - 1)(n_1 - 2)}{2} - 1.
\]
2. Otherwise,
\[
\mu(I) = \frac{(n_1 - 1)(n_1 - 2)}{2}.
\]

Theorem 3.9. [B] Let \(H = \langle n_1, n_2, n_3, n_4 \rangle\) be symmetric and \(I\) its defining ideal. Then \(I\) is not a complete intersection if and only if
\[
I = (X_1^{\alpha_1} - X_3^{\alpha_3} X_4^{\alpha_4}, X_2^{\alpha_2} - X_1^{\alpha_1} X_4^{\alpha_4}, X_3^{\alpha_3} - X_1^{\alpha_1} X_2^{\alpha_2}, X_4^{\alpha_4} - X_2^{\alpha_2} X_3^{\alpha_3}, X_3^{\alpha_3} X_1^{\alpha_1} - X_2^{\alpha_2} X_4^{\alpha_4}),
\]
where, each of generators for \(I\) is unique up to isomorphism and \(0 < \alpha_{ij} < \alpha_j\) for each \(i, j\).

We can construct almost symmetric numerical semigroups \(H = \langle 5, b, c, d \rangle\) with the given (possible) Frobenius number.

Theorem 3.10. Let \(f\) be a positive integer which is not a multiple of 5.
(1) There exists a pseudo-symmetric numerical semigroup $H = \langle 5, b, c, d \rangle$ with $F(H) = f$ if f is even and $f \geq 8$.

(2) There exists an almost symmetric numerical semigroup $H = \langle 5, b, c, d \rangle$ with $t(H) = 3$ and $F(H) = f$ if f is odd and $f \geq 7$.

(3) There exists a symmetric numerical semigroup $H = \langle 5, b, c, d \rangle$ with $F(H) = f$ if f is odd and $f \geq 9$.

Proof. This follows easily from Theorem 3.3. \qed

Example 3.11. (1) Let $H = \langle 5, 12, 19, 18 \rangle$. Then the defining ideal of H is

$$I = (X^6 - YW, Y^2 - XZ, Z^2 - X^4W, W^2 - XYZ, X^3Y - ZW),$$

and we can see that H is pseudo-symmetric with $F(H) = 26$. In fact, we get H putting $\alpha = 1, \beta = 4$ in Theorem 3.3 (1).

(2) Let $H = \langle 5, b, c, d \rangle$ be pseudo-symmetric numerical semigroup with $F(H) = 26$. Then by solving the equation $4\alpha + 6\beta - 2 = 26$ in Theorem 3.3 (1), we find that either $(\alpha, \beta) = (1, 4)$ or $(4, 2)$. Hence $H = \langle 5, 12, 19, 18 \rangle$ as above or $H = \langle 5, 17, 14, 18 \rangle$.

(3) Let $H = \langle 5, 11, 13, 14 \rangle$. Then the defining ideal of H is

$$I = (X^5 - YW, Y^3 - XW^2, Z^2 - X^3Y, W^2 - X^3Z, X^2W - YZ, XY^2 - ZW).$$

Hence H is almost symmetric with $t(H) = 3$ and $F(H) = 17$ by (3.5).

(4) Assume $H = \langle 5, b, c, d \rangle$ be an almost symmetric numerical semigroup with $t(H) = 3$ with $F(H) = 17$. Then solving $4\alpha + 6\beta - 13 = 17$, we get $(\alpha, \beta) = (3, 2)$ and we see that $H = \langle 5, 11, 13, 14 \rangle$ is the unique one with $t(H) = 3$ and $F(H) = 17$.

(5) Let $H = \langle 5, 18, 16, 14 \rangle$. Then its defining ideal is

$$I = (X^5 - ZW, Y^2 - X^4Z, Z^2 - YW, W^2 - X^2Y, X^4W - YZ).$$

This implies H is symmetric with $F(H) = 27$ by Theorem 3.3 (3).

(6) If $H = \langle 5, 19, 13, 16 \rangle$ is symmetric with $F(H) = 27$, then solving $4\alpha + 6\beta - 5 = 27$, we get $(\alpha, \beta) = (5, 2)$ or $(2, 4)$. Then we see that $H = \langle 5, 19, 13, 16 \rangle$ and $H = \langle 5, 14, 18, 16 \rangle$ are the symmetric numerical semigroups satisfying this condition.

Acknowledgment. The authors would like to thank P.A. García-Sánchez for valuable advices. The third named author is partially supported by Grant-in-Aid for Scientific Research 20540050 and Individual Research Expense of College of Humanity and Sciences, Nihon University.

References
