On the Radii of Starlikeness and Convexity for Certain Multivalent Functions

Teruo YAGUCHI
(Received October 31, 1990)

We consider the class A_p of functions $f(z)$ which are analytic in the unit disk and have the conditions $f(0)=f'(0)=\cdots=f^{(p-1)}(0)=0$ and $f^{(p)}(0)=p!$. The object of the present paper is to determine the radii of starlikeness and convexity of order r for functions of certain subclass of the class A_p.

1. Introduction.

Let $p \in \mathbb{N} = \{1, 2, 3, \ldots\}$, $0 < \alpha < p$, $\beta > 0$ and $0 < r \leq 1$. Let U_r denote the set $\{z : |z| < r\}$ and let U denote the unit disk U_1. Next, let A_p denote the class of functions $f(z)$ of the form:

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n,$$

which are analytic in the unit disk U. We denote A_1 by A.

A function $f(z)$ in the class A_p is said to be p-valently starlike of order α in U_r if and only if it satisfies

$$\text{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in U_r).$$

We denote, by $S_p(\alpha)_r$, the subclass of the class A_p consisting of all p-valently starlike functions of order α in U_r. Furthermore, a function $f(z)$ in the class A_p is said to be p-valently convex of order α in U_r if and only if it satisfies

$$\text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in U_r).$$

Also, we denote by $K_p(\alpha)_r$ the subclass of the class A_p consisting of all p-valently convex functions of order α in U_r.

Let M be the class of functions $p(z)$ of the form:

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,$$

which are analytic in the unit disk U. A function $p(z)$ in the class M is said to be a member of the class $M(\beta)$ if and only if it satisfies

$$|\text{arg} \ p(z)| < \frac{\pi \beta}{2} \quad (z \in U).$$

Finally, a function $f(z)$ in the class A_p is said to be a member of the class $C_p(M_\beta, \alpha)$.
if and only if there is a function \(g(z) \in S'_p(\alpha) \) such that \(\frac{f(z)}{g(z)} \in M(\beta) \). A function \(f(z) \) in the class \(A_p \) is also said to be a member of the class \(C_p(M_p, \alpha) \) if and only if there is a function \(g(z) \in K_p(\alpha) \) such that \(\frac{f'(z)}{g'(z)} \in M(\beta) \).

In particular, whenever the numbers \(p, \alpha, \beta \) and \(r \) mentioned in technical terms \(S'_p(\alpha), K_p(\alpha), C'_p(M_p, \alpha) \) and \(C_p(M_p, \alpha) \) are equal to 1, 0, 1 and 1, respectively, these numbers are removed from the technical terms. For example,

\[
\begin{align*}
S'_p(\alpha) &= S'_p(\alpha), \quad K_p(\alpha) = K_p(\alpha), \quad C'_p(M_p, \alpha) = C'_p(M_p, \alpha), \\
S'_r(\alpha) &= S'_r(\alpha), \quad K(\alpha) = K(\alpha), \quad C(\alpha, \alpha) = C(\alpha, \alpha), \\
K &= K(0), \quad C = C(1).
\end{align*}
\]

A function \(f(z) \) in the classes \(S^*, K, K(\alpha), C \) and \(C(\alpha, \alpha) \) is said to be starlike, convex, convex of order \(\alpha \) in \(U \), close-to-convex and close-to-convex of type \(\alpha \), respectively.

2. Preliminaries.

Before getting our results, we here have to recall Lemma 2. A, 2. B and prove Lemma 2. 1.

Lemma 2. A (Nunokawa and Causey [1]). Let \(\beta > 0 \). If \(p(z) \in M(\beta) \), then

\[
|p'(z)| \leq \frac{2\beta}{1-|z|^2} \quad (z \in U).
\]

The following lemma is a generalization of Alexander’s Theorem.

Lemma 2. B. Let \(p \in N \) and \(0 \leq \alpha < p \). Then we have

\[
f(z) \in K_p(\alpha) \quad \text{if and only if} \quad \frac{z}{p}f'(z) \in S'_p(\alpha).
\]

Lemma 2. 1. Let \(p \in N \) and \(0 \leq \alpha < p \). If \(g(z) \in S'_p(\alpha) \), then

\[
\text{Re} \frac{zg'(z)}{g(z)} \geq (p-\alpha) \frac{1-|z|}{1+|z|} + \alpha \quad (z \in U).
\]

Proof. Defining the functions \(h(z) \) and \(h_0(z) \) by

\[
h(z) = \frac{zg'(z)}{p'g(z)} \quad \text{and} \quad h_0(z) = \frac{z}{p} \frac{1-\alpha}{1+\alpha} + \frac{\alpha}{p},
\]

respectively, we have

\[
h(z), h_0(z) \in M, \quad h(0) = h_0(0) \quad \text{and} \quad \text{Re} \ h(z) > \frac{\alpha}{p},
\]

because of \(g(z) \in S'_p(\alpha) \). Since the function \(h_0(z) \) is univalent in the unit disk \(U \) and maps the disk \(U \) onto \(\text{Re} \ w > \frac{\alpha}{p} \), we obtain

\[
|h_0^{-1}(h(z))| \leq |z| \quad (z \in U),
\]

by using Schwarz’s lemma. This inequality shows that the image of a point \(z \) in the unit disk \(U \) by the function \(h(z) \) has to be in the disk whose diameter end points are
3. The radius of starlikeness.

In this section, we have a theorem and four corollaries of the theorem.

Theorem 3.1. Let $p \in \mathbb{N}, j, l \in \{0, 1, 2, \ldots, p-1\}, 0 \leq \alpha < p-j, \beta > 0$ and $0 \leq \gamma < p-l$.

If a function $f(z)$ is in the class A_p and satisfies

$$
(p-l)! z^l f^{(1)}(z) \in M(\beta)
$$

for some $g(z) \in A_p$ with the condition

$$
\frac{(p-j)!}{p!} g^{(j)}(z) \in S_{\gamma}^\alpha,
$$

then

$$
\frac{(p-l)!}{p!} f^{(1)}(z) \in S_{\gamma}^{p-j}(r),
$$

where

$$
\left\{ \begin{array}{ll}
\frac{p-j-\alpha+\beta-\sqrt{A}}{p+l-2j-2\alpha+\gamma} & \text{if } p+l-2j-2\alpha+\gamma > 0, \\
\frac{p-j-\alpha+\beta+\sqrt{A}}{p+l-2j-2\alpha+\gamma} & \text{if } p+l-2j-2\alpha+\gamma < 0, \\
\frac{p-j-\alpha}{p-j-\alpha+\beta} & \text{if } p+l-2j-2\alpha+\gamma = 0,
\end{array} \right.
$$

and

$$
A = (\alpha-\beta-\gamma+j-l)^2 + 2\beta(p-l-\gamma).
$$

The result is sharp for the function $f(z)$ defined by

$$
f(z) = \frac{z^p}{(1-z)^{2(p-j-\alpha)}} \left(\frac{1+z}{1-z} \right)^\beta (l=0),
$$

$$
f(z) = \left[\int_0^1 \frac{p+1}{(1-\xi)^{2(p-j-\alpha)}} \left(\frac{1+\xi}{1-\xi} \right)^\beta d\xi \right] (l=1),
$$

and

$$
f(z) = \left[\int_0^1 \int_0^1 \cdots \int_0^1 \frac{p+1}{(p-l)! (1-\zeta_1)^{2(p-j-\alpha)}} \left(\frac{1+\zeta_1}{1-\zeta_1} \right)^\beta d\zeta_1 \cdots d\zeta_{l-1} d\zeta_l \right] (l=2, 3, \ldots, p-1),
$$

at $z=-|z|$.

Proof. Defining the function $p(z)$ by

$$
p(z) = \frac{(p-l)!}{(p-j)!} z^l f^{(1)}(z) \left/ z^l g^{(j)}(z) \right.,
$$

we have $p(z) \in M(\beta)$. Since

$$
\frac{p^*(z)}{p(z)} = \frac{z^l f^{(l+1)}(z)}{f^{(1)}(z)} - \frac{z^l f^{(l+1)}(z)}{g^{(j)}(z)}
$$

we see, using Lemma 2. A, that

$$
\left| \frac{z^l f^{(l+1)}(z)}{f^{(1)}(z)} + l - j - \frac{z^l g^{(j+1)}(z)}{g^{(j)}(z)} \right| \leq \frac{2\beta|z|}{1-|z|^3} (z \in U).
$$
The function \(\frac{(p-j)!}{p!} g^{(p-j)}(z) \in S_{p-j}(\alpha) \) satisfies

\[
\Re \left(\frac{z g^{(p-j+1)}(z)}{g^{(p)}(z)} \right) \geq \Re \left(\frac{z g^{(p-j+1)}(z)}{g^{(p)}(z)} \right) + j - l - \frac{2\beta|z|^2}{1 - |z|^2} \geq (p-j-a) \frac{1 - |z|}{1 + |z|} + \alpha + j - l - \frac{2\beta|z|^2}{1 - |z|^2} > \gamma
\]
in \(U_r \), which is equivalent to the inequality

\[
(p + l + \gamma - 2j - 2a)|z|^2 - 2(p - j - a + \beta)|z| + p - \gamma - l > 0
\]
in \(U_r \), where \(r \) is defined by (3.4).

We here obtain many corollaries. Putting \(l = j \) in Theorem 3.1, we have Corollary 3.1.

Corollary 3.1. Let \(p \in \mathbb{N}, j \in \{0, 1, 2, \ldots, p-1\}, 0 \leq \alpha < p-j, \beta > 0 \) and \(0 \leq \gamma < p-j \). If a function \(f(z) \) is in the class \(A_p \) and satisfies

\[
\frac{(p-j)!}{p!} f^{(p-j)}(z) \in S_{p-j}(\gamma)r,
\]
where

\[
\left\{ \begin{array}{lr}
r = \frac{p-j-a+\beta-\sqrt{B}}{p-j-2a+\gamma} & \text{if } p-j-2a+\gamma > 0, \\
r = \frac{p-j-a+\beta+\sqrt{B}}{p-j-2a+\gamma} & \text{if } p-j-2a+\gamma < 0, \\
r = \frac{p-j-a}{p-j-\alpha+\beta} & \text{if } p-j-2a+\gamma = 0,
\end{array} \right.
\]

and

\[
B = (\alpha - \beta - \gamma)^2 + 2\beta(p-j-\gamma).
\]
The result is sharp for the function \(f(z) \) defined by

\[
f(z) = \frac{z^p}{(1-z)^{2(p-j-\gamma)}} \left(\frac{1+z}{1-z} \right)^j \quad (j = 0),
\]

\[
f(z) = \int_0^z \left(\frac{\zeta^{p-1}}{(1-\zeta)^{2(p-j-\gamma)}} \left(\frac{1+\zeta}{1-\zeta} \right)^j \right) d\zeta \quad (j = 1),
\]

and

\[
f(z) = \int_0^{z_1} \cdots \int_0^{z_{j-1}} \frac{\zeta^j}{(p-j)! (1-\zeta_1)^{2(p-j-\gamma)}} \left(\frac{1+\zeta_1}{1-\zeta_1} \right)^j d\zeta_1 \cdots d\zeta_{j-1} d\zeta_j \quad (j = 2, 3, \ldots, p-1),
\]
at \(z = -|z| \).

Putting \(j = 0 \) in Corollary 3.1, we have Corollary 3.2.
Corollary 3.2. Let \(p \in \mathbb{N}, 0 \leq \alpha < p, \beta > 0 \) and \(0 \leq \gamma < p \). If \(f(z) \in C_p(M_p, \alpha) \), then
\[
f(z) \in S_p(\gamma)_r, \]
where
\[
\begin{align*}
r &= \frac{p - \alpha + \beta - \sqrt{C}}{p - 2\alpha + \gamma} \quad \text{if} \quad p - 2\alpha + \gamma > 0, \\
r &= \frac{p - \alpha + \beta + \sqrt{C}}{p - 2\alpha + \gamma} \quad \text{if} \quad p - 2\alpha + \gamma < 0, \\
r &= \frac{p - \alpha}{p - \alpha + \beta} \quad \text{if} \quad p - 2\alpha + \gamma = 0,
\end{align*}
\]
and
\[
C = (\alpha - \beta - \gamma)^2 + 2\beta(p - \gamma).
\]
The result is sharp for the function \(f(z) \) defined by (3.19) at \(z = -|z| \).

Putting \(p = 1 \) in Corollary 3.2, we have Corollary 3.3.

Corollary 3.3. Let \(0 \leq \alpha < 1, \beta > 0 \) and \(0 \leq \gamma < 1 \). If \(f(z) \in C^*(M_p, \alpha) \), then \(f(z) \in S^*(\gamma)_r \), where
\[
\begin{align*}
r &= \frac{1 - \alpha + \beta - \sqrt{D}}{1 - 2\alpha + \gamma} \quad \text{if} \quad 1 - 2\alpha + \gamma > 0, \\
r &= \frac{1 - \alpha + \beta + \sqrt{D}}{1 - 2\alpha + \gamma} \quad \text{if} \quad 1 - 2\alpha + \gamma < 0, \\
r &= \frac{1 - \alpha}{1 - \alpha + \beta} \quad \text{if} \quad 1 - 2\alpha + \gamma = 0,
\end{align*}
\]
and
\[
D = (\alpha - \beta - \gamma)^2 + 2\beta(1 - \gamma).
\]
The result is sharp for the function \(f(z) \) defined by
\[
f(z) = \frac{z}{(1 - z)^{2(1 - \alpha)}} \left(\frac{1 + z}{1 - z} \right)^{\beta} \]
at \(z = -|z| \).

Remark 3.1. Taking \(\alpha = 0 \) in Corollary 3.3, we have the corresponding result due to Yaguchi, Obradović, Nunokawa and Owa [3].

Putting \(\gamma = \alpha \) in Corollary 3.3, we have the following corollary.

Corollary 3.4. Let \(0 \leq \alpha < 1 \) and \(\beta > 0 \). If \(f(z) \in C^*(M_p, \alpha) \), then \(f(z) \in S^*(\alpha)_r \), where
\[
r = 1 - \frac{\sqrt{E} - \beta}{1 - \alpha}
\]
and
\[
E = \beta^2 + 2\beta(1 - \alpha).
\]
The result is sharp for the function \(f(z) \) defined by (3.26) at \(z = -|z| \).

Remark 3.2. Taking \(\alpha = 0 \) and \(\beta = 2 \) in Corollary 3.4, we have the corresponding result due to Yaguchi and Nunokawa [2].
4. The radius of convexity.

We obtain the following result with the aid of Theorem 3.1 and Lemma 2. B.

Theorem 4.1. Let \(p, j, l, \alpha, \beta \) and \(\gamma \) have the same conditions as in Theorem 3.1. If a function \(f(z) \) is in the class \(A_p \) and satisfies

\[
\frac{(p-l-1)!}{(p-j-1)!} \frac{z^l f^{(l+1)}(z)}{z^j g^{(j+1)}(z)} \in M(\beta)
\]

for some \(g(z) \in A_p \) with the condition

\[
\frac{(p-j-1)!}{p!} z^j g^{(j+1)}(z) \in K_{p-1}(\gamma),
\]

then

\[
\frac{(p-l-1)!}{p!} f^{(l)}(z) \in K_{p-l}(\gamma),
\]

where \(r \) is given by (3.4). The result is sharp for the function \(f(z) \) defined by (3.7) \((l=0)\), and the function

\[
f(z) = \int_0^1 \cdots \int_0^{\xi_l} \frac{p!}{(p-l-1)!} \frac{z^l}{(1-\xi_0)^{(p-j-\gamma)}} \frac{1}{(1-\xi_0)^{\beta}} d\xi_0 \cdots d\xi_{l-1} d\xi_l,
\]

\((l=1, 2, \ldots, p-1)\)
at \(z = -|z| \).

Proof. Let the functions \(F(z) \) and \(G(z) \) in the class \(A_p \) be defined by

\[
F^{(l)}(z) = \frac{x}{p-l} f^{(l+1)}(z)
\]

and

\[
G^{(j)}(z) = \frac{x}{p-j} g^{(j+1)}(z),
\]

respectively. Then we have, with the aid of Lemma 2. B, (4.1) and (4.2),

\[
\frac{(p-j-1)!}{p!} G^{(j)}(z) \in S^*_p-j(\alpha),
\]

and

\[
\frac{(p-l-1)!}{(p-j-1)!} z^l F^{(l)}(z) = \frac{(p-l-1)!}{(p-j-1)!} z^l f^{(l+1)}(z) \in M(\beta).
\]

By Theorem 3.1, we also obtain

\[
\frac{(p-l-1)!}{p!} F^{(l)}(z) \in S^*_p-l(\gamma),
\]

where \(r \) is given by (3.4). Using Lemma 2. B again, we have that \(\frac{(p-l-1)!}{p!} f^{(l)}(z) \) is \((p-l)\)-valently convex of order \(\gamma \) in \(U_r \).

Putting \(l = j \) in Theorem 4.1, we have Corollary 4.1.

Corollary 4.1. Let \(p, j, \alpha, \beta \) and \(\gamma \) have the same conditions as in Corollary 3.1. If a function \(f(z) \) is in the class \(A_p \) and satisfies

\[
\frac{f^{(j+1)}(z)}{g^{(j+1)}(z)} \in M(\beta)
\]

(42)
for some \(g(z) \in \mathcal{A}_p \) with the condition (4.2), then
\[
(4.11) \quad \frac{(p-j+1)!}{p!} f^{(j)}(z) \in K_{p-j}(\gamma)_r,
\]
where \(r \) is given by (3.17). The result is sharp for the function \(f(z) \) defined by
\[
(4.12) \quad f(z) = \int_0^z \frac{\xi^{p-1}}{(1-\xi)^2} \left(\frac{1}{1-\xi} \right)^j d\xi, \quad (j=0),
\]
\[
(4.13) \quad f(z) = \int_0^z \cdots \int_0^z \frac{p!}{(p-j)!} \left(\frac{1}{1-\xi} \right)^j d\xi_0 \cdots d\xi_{j-1} d\xi_j,
\]
\((j=1, 2, \ldots, p-1) \)
at \(z = -|z| \).

Putting \(j = 0 \) in Corollary 4.1, we have Corollary 4.2.

Corollary 4.2. Let \(p, \alpha, \beta \) and \(\gamma \) have the same conditions as in Corollary 3.2. If \(f(z) \in \mathcal{C}_p(M_\beta, \alpha) \), then \(f(z) \in \mathcal{K}_\alpha(\gamma)_r \), where \(r \) is given by (3.22). The result is sharp for the function \(f(z) \) defined by (4.12) at \(z = -|z| \).

Putting \(p = 1 \) in Corollary 4.2, we have Corollary 4.3.

Corollary 4.3. Let \(\alpha, \beta \) and \(\gamma \) have the same conditions as in Corollary 3.3. If \(f(z) \in \mathcal{C}(M_\alpha, \alpha) \), then \(f(z) \in \mathcal{K}(\gamma)_r \), where \(r \) is given by (3.24). The result is sharp for the function \(f(z) \) defined by
\[
(4.14) \quad f(z) = \int_0^z \frac{1}{(1-\xi)^2} \left(\frac{1}{1-\xi} \right)^j d\xi,
\]
at \(z = -|z| \).

Remark 4.1. Taking \(\alpha = 0 \) in Corollary 4.3, we have the corresponding result due to Yaguchi, Obradović, Nunokawa and Owa [3].

Putting \(\beta = 1 \) in Corollary 4.3, we have Corollary 4.4.

Corollary 4.4. Let \(0 \leq \alpha < 1 \) and \(0 \leq \gamma < 1 \). If a function \(f(z) \) in the class \(A \) is close-to-convex of type \(\alpha \), then the function \(f(z) \) is convex of order \(\gamma \) in \(U_r \), where
\[
(4.15) \quad r = \begin{cases}
\frac{2-\alpha - \sqrt{F}}{1-2\alpha + \gamma} & \text{if } 1-2\alpha + \gamma > 0, \\
\frac{2-\alpha + \sqrt{F}}{1-2\alpha + \gamma} & \text{if } 1-2\alpha + \gamma < 0, \\
\frac{1-\alpha}{2-\alpha} & \text{if } 1-2\alpha + \gamma = 0,
\end{cases}
\]
and
\[
(4.16) \quad F = (1-\alpha + \gamma)^2 + 2(1-\gamma).
\]
The result is sharp for the function \(f(z) \) defined by
\[
(4.17) \quad f(z) = \frac{1}{(2\alpha-1)(1-\alpha)} \left(\frac{\alpha - (1-\alpha)z}{(1-\alpha)^2 - 1} - \alpha \right) \left(\alpha = \frac{1}{2} \right),
\]
\[
(4.18) \quad f(z) = \frac{2\alpha}{1-z} + \log (1-z) \quad \left(\alpha = \frac{1}{2} \right),
\]
at \(z = -|z| \).
Putting \(a = 0 \) in Corollary 4.4, we have Corollary 4.5.

Corollary 4.5. Let \(0 \leq \gamma < 1 \). If a function \(f(z) \) in the class \(A \) is close-to-convex, then the function \(f(z) \) is convex of order \(\gamma \) in \(U_r \), where \(r = \frac{2 - \sqrt{3 + \gamma^2}}{1 + \gamma} \). The result is sharp for the Koebe function \(f(z) = \frac{z}{(1-z)^2} \) at \(z = -|z| \).

References

Department of Mathematics
College of Humanities and Sciences
Nihon University
3-25-40 Sakurajousui, Setagaya,
Tokyo, 156 JAPAN