Normality of blowing-up

By

Shiro GOTO and Kikumichi YAMAGISHI*

(Received July 1, 1985)

1. Introduction.

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \text{dim } A > 0$. Let $q = (a_1, a_2, \ldots, a_d)$ be a parameter ideal in A and put $R = \bigoplus_{n \geq 0} q^n$, the Rees ring of q. In this note we shall explore when the scheme $\text{Proj } R$ is normal and our result is stated as follows:

Theorem (1.1). Suppose that depth $A > 0$. Then the following conditions are equivalent.

1. $\text{Proj } R$ is normal.
2. A is a regular local ring and $\ell_A(q + \mathfrak{m}^2/\mathfrak{m}^3) \geq d - 1$.

When this is the case, the ring R is normal. (Here $\ell_A(q + \mathfrak{m}^2/\mathfrak{m}^3)$ stands for the length of the A-module $q + \mathfrak{m}^2/\mathfrak{m}^3$.)

In [6] the second author tackled with this theme and mentioned the equivalence of (1) and (2) in (1.1) with a rather strong assumption that A is Cohen-Macaulay (cf. [6, Ch. 4, (1.3)]); our theorem guarantees his assumption can be replaced by the weaker one that depth $A > 0$.

We will prove Theorem (1.1) in the next section. As is noted in (1.1), the ring R is normal if (and only if) $\text{Proj } R$ is normal and depth $A > 0$. The normality of R itself is characterized in divers manners; especially, appealing to a recent result of J. Watanabe [7] on \mathfrak{m}-full ideals, we can prove that R is normal if and only if q is \mathfrak{m}-full. As the fact may have its own significance, in Section 3 we will discuss this subject a little more closely.

Throughout this note let A denote a Noetherian local ring with maximal ideal \mathfrak{m}. We assume that $\text{dim } A = d > 0$ and fix a parameter ideal $q = (a_1, a_2, \ldots, a_d)$ in A. Let $R = \bigoplus_{n \geq 0} q^n$ be the Rees ring of q.

2. Proof of Theorem (1.1).

Let $B = A[x/a_i | x \in q]$ and $P = \mathfrak{m}B$. To begin with we note

* Both authors are partially supported by Grant-in-Aid for Co-operative Research.
Proposition (2.1). (1) \(\dim B = d. \)
(2) \(P \) is a height 1 prime ideal of \(B \) and \(P = \sqrt{a_1}B. \)
(3) The elements \(a_i/a_1 \mod P(1 \leq i \leq d) \) of \(B/P \) are algebraically independent over \(A/m. \)

Let \(\mathfrak{p} \in \text{Spec} \ A \) with \(\mathfrak{p} \not
\supseteq a_1. \) We put
\[I(\mathfrak{p}) = \mathfrak{p} A[1/a_1] \cap B. \]
Then \(I(\mathfrak{p}) \in \text{Spec} \ B, \ I(\mathfrak{p}) \cap A = \mathfrak{p}, \) and \(B/I(\mathfrak{p}) = A_{\mathfrak{p}}. \) Let \(x^* = x \mod \mathfrak{p} \) for each \(x \in A. \)

Lemma (2.2). \(B/I(\mathfrak{p}) = A[\mathfrak{p}[x^*/a_1^*]|x \in \mathfrak{a}] \) as \(A \)-algebras. In particular \(\dim B/I(\mathfrak{p}) \leq \dim A/\mathfrak{p}. \)

Proof. By definition we get an embedding \(B/I(\mathfrak{p}) \subseteq A/\mathfrak{p}[1/a_1^*] \) of \(A \)-algebras, whose image coincides with \(A[\mathfrak{p}[x^*/a_1^*]|x \in \mathfrak{a}] \). As \(\dim A[\mathfrak{p}[x^*/a_1^*]|x \in \mathfrak{a}] \leq \dim A/\mathfrak{p} \) by the dimension formula, the second assertion follows from the first.

Corollary (2.3). (1) \(B = \{ I(\mathfrak{p}) | \mathfrak{p} \in \text{Ass} \ A \text{ and } \mathfrak{p} \not
\supseteq a_1 \}. \)
(2) \(\{ I \in \text{Spec} \ B | \dim B/I = d \} = \{ I(\mathfrak{p}) | \mathfrak{p} \in \text{Spec} \ A \text{ and } \dim A/\mathfrak{p} = d \} = \{ I \in \text{Spec} \ B | I \not
\subseteq I \}. \)

Proof. Let \(I \in \text{Spec} \ B \) and put \(\mathfrak{p} = I \cap A. \) Then if \(\mathfrak{p} \not
\supseteq a_1, \) we have \(I = I(\mathfrak{p}) \) as \(A[1/a_1] = B[1/a_1]. \) Hence we get Assertion (1), because \(a_1 \) is \(B \)-regular and \(A_{\mathfrak{p}} = B_{I(\mathfrak{p})}. \)

Consider Assertion (2). First of all take \(I \in \text{Spec} \ B \) with \(\dim B/I = d. \) Then as \(B/I = 0, \) we may write \(I = I(\mathfrak{p}) \) with \(\mathfrak{p} = I \cap A. \) Notice \(\dim B/I = d \leq \dim A/\mathfrak{p} \) by (2.2) and we get \(\dim A/\mathfrak{p} = d. \) Conversely let \(\mathfrak{p} \in \text{Spec} \ A \) and assume \(\dim A/\mathfrak{p} = d. \) Then \(\mathfrak{p} \not
\supseteq a_1 \) clearly. We put \(I = I(\mathfrak{p}) \). Recall that \(B/I = A[\mathfrak{p}[x^*/a_1^*]|x \in \mathfrak{a}] \) as \(A \)-algebras and we see by (2.1) that the ring \(B/P + 1 = (B/I)/\mathfrak{m}(B/I) \) is a polynomial ring with \(d-1 \) variables over the field \(k = A/m. \) Hence the canonical epimorphism \(B/P \longrightarrow B/P + 1 \) of \(k \)-algebras must be an isomorphism, because \(B/P \) and \(B/P + 1 \) are \(k \)-isomorphic; thus \(P \supseteq I. \) Finally let \(I \in \text{Spec} \ B \) with \(I \not
\subseteq P. \) Then \(\dim B/I = d, \) as \(\dim B/P = d-1 \text{—— this completes the proof of Assertion (2).} \)

Let \(e(A) \) (resp. \(e(B_P) \)) denote the multiplicity of \(A \) (resp. \(B_P \)).

Lemma (2.4). \(e(B_P) \geq e(A). \)

Proof. Let \(h : A[T_2, T_3, ..., T_d] \longrightarrow B \) be the \(A \)-algebra map defined by \(h(T_i) = a_i/a_1 \) \((2 \leq i \leq d), \) where \(T_2, T_3, ..., T_d \) are indeterminates over \(A. \) Let \(K = \text{Ker} \ h \) and \(f_i = a_i T_i - a_i \) \((2 \leq i \leq d), \) then \(K \supseteq (f_2, f_3, ..., f_d). \) Notice \(a_i^{n+1} K \subseteq (f_2, f_3, ..., f_d) \) for some integer \(n \geq 1, \) because \(A[1/a_1] = B[1/a_1]. \) Now let \(C = A[T_2, T_3, ..., T_d] \) \(M = \text{m}(A[T_2, T_3, ..., T_d]) \) and consider the exact sequence
\[0 \longrightarrow L \longrightarrow C/(f_2, f_3, ..., f_d)C \longrightarrow B_P \longrightarrow 0 \]
of \(C \)-modules. Then as \(a_i^{n+1} L = (0) \) and as \(f_2, f_3, ..., f_d \) form a system of parameters for the local ring \(C, \) we have \(\ell_C(L) < \infty \) and therefore
\[e(B_P) = e(C/(f_2, f_3, ..., f_d)C). \]
Recalling that \(e(C/(f_2, f_3, ..., f_d)C) \geq e(C) \), we get the required inequality \(e(B_P) \geq e(A) \), as \(e(C) = e(A) \).

We say that \(A \) is unmixed if \(\dim A^\vee / P = d \) for any \(p \in \Ass A \), where \(\hat{A} \) denotes the completion of \(A \). We shall use the following criterion of regularity.

Proposition (2.5). ([4, (40.6)]) A is a regular local ring if and only if \(e(A) = 1 \) and \(A \) is unmixed.

The next result (2.6) is a key theorem in this paper.

Theorem (2.6). Suppose that \(A \) is unmixed. Then the following conditions are equivalent.

1. \(A \) is a regular local ring and \(\ell_A(q + m^2/m^2) \geq d - 1 \).
2. \(B_P \) is a DVR.
3. \(\Proj R \) is normal.

Proof. \((3) \implies (2)\) Since \(\Spec B \) appears as one of the affine charts of \(\Proj R \), this implication is clear.

\((2) \implies (1)\) As \(e(A) = 1 \) by (2.4), we get \(A \) is regular (cf. (2.5)). We will prove that \(\ell_A(q + m^2/m^2) \geq d - 1 \). Let us maintain the same notation as in Proof of (2.4).

Notice that \(K = (f_2, f_3, ..., f_d) \) in our case, since \(a_1, a_2, ..., a_d \) is an \(A \)-regular sequence. Hence \(f_2, f_3, ..., f_d \) is a part of a minimal system of generators for the maximal ideal \(mC \) of \(C \), because \(B = C/(f_2, f_3, ..., f_d)C \) is a DVR by our assumption. Thus \(\ell_A(q + m^2/m^2) = \ell_C(qC + m^2C/m^2C) \geq d - 1 \), as \(qC = (a_1, f_2, ..., f_d)C \).

\((1) \implies (3)\) As the ring \(R \) is Cohen-Macaulay (cf. [1]), the scheme \(\Proj R \) satisfies the condition \((S_2) \). So it is enough to check that all the rings \(A[x/a_i | x \in q] \) \((1 \leq i \leq d)\) satisfy the condition \((R_i) \). We may assume without loss of generality that \(i = 1 \). Let \(I \in \Spec B \) with \(\dim B_I = 1 \). Then if \(I \ni a_1 \), \(B_I \cong A_p \) where \(p = I \cap A \) and \(B_I \) is a DVR in this case. Suppose that \(I \ni a_1 \). Then we get \(I = P \) by (2.1) (2). We must show that \(B_P \) is a DVR.

First of all notice that \(m = (a_1, ..., \hat{a}_i, ..., a_d, b) \) for some \(1 \leq i \leq d \) and \(b \in m \), because \(\ell_A(q + m^2/m^2) \geq d - 1 \). We put \(J = bB_P \). Assume \(i \geq 2 \) and write \(a_i = \sum a_jx_j + by \) with \(x_j, y \in A \). Then as \(a_i = a_i - b \), we get

\[a_i(a_i/a_i - \sum a_jx_j - x_i) \in J. \]

Hence \(a_i \in J \), because

\[a_i/a_i - \sum a_jx_j - x_i \in P \]

(c.f. (2.1) (3)). We can similarly prove that \(a_i \in J \) for the case \(i = 1 \) too. Thus \(mB_P = bB_P \), which guarantees that \(B_P \) is a DVR. This completes the proof of (2.6).

Remark (2.7). Unless \(A \) is unmixed, the implication \([2) \implies (1)\] in (2.6) is not true in general even though \(A \) is an integral domain and \(B \) is a regular ring. In
fact according to M. Nagata [4], there exist a Noetherian local integral domain A of dim $A=2$ and a system a, b of parameters for A which satisfy the following conditions:
(1) A is not a regular ring;
(2) $B=A[b/a]$ is a regular ring.

Proof. Take a Noetherian local integral domain A of dim $A=2$ so that
(1) the normalization \bar{A} of A is a regular ring and only has two maximal ideals, say M and N;
(2) $m=M\cap N$;
(3) A contains elements x and z such that $M=(x-1, z)A$, $N=x\bar{A}$, $z\in N$, and $\bar{A}=A+Ax$.

(Such rings A must exist, see [4, p. 204].) Then A is not regular as $A\approx \bar{A}$. We put $a=xz$ and $b=x(x-1)$. Then a, b form a system of parameters in A. Let us check that $B=A[b/a]$ is a regular ring.

Recall that $z\in m=M\cap N$. Then we see $B\supset \bar{A}$, as B contains $b/a=(x-1)/z$ and
as $\bar{A}=A+Ax$ by (3); hence $B=\bar{A}[<(x-1)/z]$. Let Q be a prime ideal of B and put $p=Q\cap \bar{A}$. If $Q\ni z$, then Q contains $x-1=z(x-1)/z$ and so we have $p=M$ by (3). Therefore we get $B_p=\bar{A}_M[<(x-1)/z]$, which is a regular ring because $x-1, z$ is a regular system of parameters for \bar{A}_M (cf., e.g., [2, (4.6)]). Hence the local ring $B_Q=(B_p)_Q$ is regular. If $Q\not\ni z$, then $B_Q=\bar{A}_p$ as $B[1/z]=\bar{A}[1/z]$ and we have B_Q is a regular ring also in this case.

Corollary (2.8). The following conditions are equivalent.
(1) B_p is a DVR.
(2) The completion \hat{A} of A contains a unique prime ideal p such that dim $\hat{A}/p=d$.
Furthermore \hat{A}/p is a regular local ring, $\ell_\hat{A}(\alpha\hat{A}+m^2\hat{A}+p/m^2\hat{A})\leq d-1$, and \hat{A}_p is a field.

Proof. We put $C=\hat{A}[x/a_t|x\in q]$ and $Q=mc$. Then C is a flat extension of B as $C=\hat{A}\otimes B$. Notice $Q=PC$ and $P=Q\cap B$. Then we get C_p is a DVR if and only if B_p is; thus we may assume that A is complete.

(1) \implies (2) By (2.4) we get $e(A)=1$. Consequently by the formula
$$e(A) = \sum_{p\in \text{Spec} A} e(A_p) \cdot e(A/p)$$
(cf. [4, (23.5)]), we find that A contains a unique prime ideal p with dim $A/p=d$.
Furthermore A/p is a regular local ring by (2.5), as $e(A/p)=1$. Clearly A_p is a field. Now we will prove that $\ell_\hat{A}(\alpha+m^2+p/m^2+p)\geq d-1$.

Let $I=I(p)$. Then by (2.3) (2) we see $I\not\subset P$, whence $IB_P=(0)$ as B_P is a DVR. On the other hand we have by (2.2) an isomorphism $B/I=\hat{A}[x^*/a_t|x\in q]$ of A-algebras. Thus the local ring $(\hat{A}/p[\alpha^*/a_t^*]|x\in q)_P$ is a DVR and we conclude by
Normality of blowing-up

(2. 6) that \(\ell_A(q+m^2+p/m^2+p) \geq d-1 \).

(2) \(\Longrightarrow (1) \) Let \(I=I(p) \). Notice that \(I \) is, by (2. 3) (2), a unique prime ideal of \(B \) such that \(I \subseteq P \). Then we get that \(IB_P=(0) \), as \(B_P \) is a Cohen-Macaulay ring and \(B_P=A_P \) is a field. Recalling the isomorphism

\[
B/I=\frac{A[p[x^*/a^*|x \in q]},
\]

we have that \(B_P=IB_P \) is a DVR because by (2. 6) so is the local ring \((A[p[x^*/a^*|x \in q]])_P \).

Corollary (2. 9). Assume that \(A \) is a homomorphic image of a Cohen-Macaulay ring and let \(a=a_1 \) be a non-zero divisor of \(A \). Then the following conditions are equivalent.

1. \(A \) is a normal ring.
2. (a) \(A[1/a] \) is a normal ring.
 (b) \(A \) contains a unique prime ideal \(p \) such that \(\text{dim } A/p = d \). Furthermore \(A/p \) is regular and \(\ell_A(q+m^2+p/m^2+p) \geq d-1 \).
 (c) For each \(Q \in \text{Ass } A \) with \(Q \neq p \), there is an integer \(N \geq 1 \) such that \(a^N \in q^{N+1}+Q \).

Proof. (1) \(\Longrightarrow (2) \) As \(A[1/a]=B[1/a] \), we see \(A[1/a] \) is a normal ring; hence \(A \) is reduced as \(A \subset A[1/a] \). Notice that \(B \) is integrally closed in the total quotient ring of \(A \), as it is normal. Then we get by (2. 2) and (2. 3) (1) an isomorphism

\[
B=\bigoplus_{Q \in \text{Ass } A} A/Q[x^*/a^*|x \in q]
\]

of \(A \)-algebras. Recall that \(e(A)=1 \) by (2. 4) and we find by the formula

\[
e(A)=\sum_{P \in \text{Spec } A} \ell(P) \cdot e(A/P)
\]

that \(A \) contains a unique prime ideal \(p \) of \(\text{dim } A/p = d \). Moreover \(A/p \) is, by (2. 5), a regular local ring because \(A/p \) is unmixed by our standard assumption. Let \(Q \in \text{Ass } A \) such that \(Q \neq p \). Then we get by the isomorphism (\#) that

\[
A/Q[x^*/a^*|x \in q] = \bigoplus_{Q \in \text{Ass } A} A/Q[x^*/a^*|x \in q],
\]

since \(P=mB \) is a prime ideal of \(B \) and since

\[
A/p[x^*/a^*|x \in q] = \bigoplus_{Q \in \text{Ass } A} A/p[x^*/a^*|x \in q]
\]

by (2. 1) (2). Hence we find that \(B_P=(A/p[x^*/a^*|x \in q])_P \) is a DVR and that the element \(a^*=a \mod Q \) is invertible in the ring \(A/Q[x^*/a^*|x \in q] \). Thus \(\ell_A(q+m^2+p/m^2+p) \geq d-1 \) by (2. 6) and \(a^N \in q^{N+1}+Q \) for some \(N \geq 1 \).

(2) \(\Longrightarrow (1) \) Let \(J \in \text{Spec } B \) and we will show that the local ring \(B_J \) is normal. If \(J \ni a \), this follows from Assumption (a) because \(B[1/a]=A[1/a] \). Assume \(J \ni a \), or equivalently \(J \supseteq P \).

Claim. \(J \ni 1(Q) \) for any \(Q \in \text{Ass } A \) such that \(Q \neq p \).

For, suppose that \(J \ni 1(Q) \) for some \(Q \in \text{Ass } A \) with \(Q \neq p \). Then as \(a^*=a \mod Q \)
is invertible in the ring $A/Q[x]/a^*|x\in q]$ (cf. Assumption (c)), we find by (2.2) that $I(Q)+P=B$ whence $J=B$—this is a contradiction.

By this claim and the embedding $B\subseteq \bigcap_{Q\in \text{Ass} A} B/I(Q)$ (recall that $\bigcap_{Q\in \text{Ass} A} I(Q) = (0)$ in B, see (2.3) (1)), we get that the ring B_f appears as a local ring of $C=A/p[x]/a^*|x\in q]$. Hence B_f is normal by (2.6).

Example (2.10). Let $S=k[[X, Y, Z, W]]$ be a formal power series ring over a field k and let $I=(X)\cap (Y, Z)\cap (X-Y, Z-W)$ in S. We put $A=S/I$, $a=Z^2-X^2 \mod I$, $b=Y-X \mod I$, and $c=W-X \mod I$. Then $q=(a, b, c)$ is a parameter ideal in A and $B=A/b^*a^*|x\in q]$. Hence B_f is normal.

Lemma (2.11). Let $I=(b_1, b_2, \ldots, b_s)$ be an m-primary ideal of A. Then $A[x/b_i|x\in I]/m\cdot A[x/b_i|x\in I]$ for some $1\leq i\leq s$.

Proof. Assume the contrary and take an integer $N\geq 1$ so that $b_i^N\in mI^n$ for all i. Let $G=\bigoplus_{n=0}^N I^n/I^{n+1}$ and put $f_i=b_i \mod I^2$. Then as $f_i^N\in mG$, we find that all the f_i's are nilpotent in G, whence $d=\dim G=0$—this is a contradiction.

In the situation of (2.11) we don't have always $A[x/b_i|x\in I]/m\cdot A[x/b_i|x\in I]$.

(For instance, consider $A=k[[t^2, t^3]]$ and $I=(t^2, t^3)$.) This is, of course, the case when b_1, b_2, \ldots, b_s is a system of parameters in A, cf. (2.1).

We now prove Theorem (1.1).

Proof of Theorem (1.1). (2) \implies (1) See (2.6).

(1) \implies (2) According to (2.6) we have only to show that A is unmixed. We put, as in Proof of (2.8), $C=A[x/a_1|x\in q]$ and $Q=mC$. Let N be a maximal ideal of C such that $N\supseteq Q$.

Claim 1. $\dim C_N/QC_N=d-1$.

Proof. The ideal N/Q is maximal in the ring C/Q and so we have that $\dim C_N/QC_N=d-1$, since C/Q is a polynomial ring with $d-1$ variables over the field A/m, cf. (2.1) (3).

Claim 2. $\dim C_N/I=d$ for any $I\subseteq \text{Ass} C_N$.

Proof. Notice that $\text{Ass} a_1B/a_1B=(P)$ as B is normal. Then we have $\text{Ass} cC/a_1C=(Q)$ as $B/a_1B\subseteq C/a_1C$. Let $I\subseteq \text{Ass} C_N$ and take $J\subseteq \text{Ass} cC_N/a_1C_N$ so that $J\supseteq I$ (this choice is possible as a_1 is C_N-regular, cf., e.g., [3, (15.D)]). Then we must have, as $\text{Ass} cC_N/a_1C_N=(Q_CN)$, that $J=Q_CN$ whence $\dim C_N/J=\dim C_N/QC_N=d-1$ by Claim 1.
Thus \(\dim C_N/I = d \) since \(J \subseteq I \).

Let us check that \(A \) is unmixed. Assume the contrary and pick \(p \in \text{Ass} \hat{A} \) so that \(\dim \hat{A}/p < d \). Then we get by (2.11)

\[
\hat{A}/p[x^*/a^* \mid x \in q] \cong \left(\hat{A}/p[x^*/a^* \mid x \in q] \right) \tag{\#}
\]

for some \(1 \leq i \leq d \), where \(x^* = x \mod p \) for each \(x \in \hat{A} \). We may assume \(i = 1 \). Recall that the ideal \(q \) is generated by non-zerodivisors of \(A \), because depth \(A > 0 \) by our standard assumption. Hence we may further assume that \(a = a_1 \) is a non-zerodivisor of \(A \). Then as \(p \nmid a \), we get by (2.2) an isomorphism \(C/I = \hat{A}/p[x^*/a^* \mid x \in q] \) of \(\hat{A} \)-algebras, where \(I = I(p) \). According to (\#) this isomorphism guarantees that \(Q + I = C \), whence we may choose a maximal ideal \(N \) of \(C \) so that \(N \nsubseteq Q + I \). Then as \(I \in \text{Ass} C \) by (2.3) (1), we get \(\dim C_N/IC_N = d \) by Claim 2 --- this is quite impossible since by (2.2)

\[
\dim C_N/IC_N \leq \dim C/I \leq \dim \hat{A}/p < d.
\]

Thus \(A \) is unmixed.

The proof of the last assertion of (1.1) shall be given in the next section, see (3.1).

Remark (2.12). \(\text{Proj} R \) is not necessarily regular even though \(\text{Proj} R \) is normal and depth \(A > 0 \). In fact, provided \(d \geq 2 \) and depth \(A > 0 \), \(\text{Proj} R \) is regular if and only if \(A \) is a regular local ring and \(q = m \) (cf., [2, (4.6)]).

3. Normality of the ring \(R \).

In this section we discuss the normality of the ring \(R = \bigoplus_{n \geq 0} q_n \) and our goal is Theorem (3.1). The following conditions are equivalent.

(1) \(A \) is regular and \(\ell_A(q + m^2/m^2) \geq d - 1 \).

(2) \(A \) is an integral domain and \(q \) is integrally closed.

(3) \(q \) is m-full.

(4) \(R \) is normal.

To begin with we recall the definition of m-full ideals. Let \(I \) be an ideal of \(A \). Then we say that \(I \) is m-full if \(mI : x = I \) for some \(x \in m \). The concept of m-full ideal was introduced by D. Rees [5] and basic properties of such ideals are discussed in [7], a few of which we need to prove (3.1).

Let \(v_A(M) \) denote, for a given finitely generated \(A \)-module \(M \), the number of elements in a minimal system of generators for \(M \).

Proposition (3.2) ([7, Theorem 2 and 3]). Let \(I \) be an m-primary ideal of \(A \) and assume that \(I \) is m-full. Let \(x \in m \) such that \(mI : x = I \). Then

\[
v_A(J) \leq v_A(I) = \ell_A(A/I + xA) + v_A(I + xA/xA)
\]

for any ideal \(J \) of \(A \) containing \(I \).

Let \(I \) be an ideal of \(A \). Then an element \(x \) of \(A \) is called integral over \(I \) if \(x \)
satisfies an equation
\[x^N + c_1 x^{N-1} + \ldots + c_N = 0 \]
with \(c_i \in R \ (1 \leq i \leq N) \). Recall that \(I \) is said to be integrally closed if every element of \(A \) which is integral over \(I \) belongs to \(I \).

The next result is due to D. Rees and a proof may be found in [7] (cf., Theorem 5).

Proposition (3.3). Suppose that \(A \) is an integral domain with infinite residue class field. Then every integrally closed ideal of \(A \) is \(m \)-full.

Proof of Theorem (3.1). (4) \(\Rightarrow \) (2) Let \(N = mR + R_+ \) and \(P \in \text{Ass } R \). Then \(P \subseteq N \), as \(P \) is graded and as \(N \) is a unique graded maximal ideal of \(R \). As \(R_N \) is normal, it is an integral domain and so \(PR_N = (0) \), whence \(P = (0) \). Thus \(R \) is an integral domain and so \(A \) is. Let us identify \(R \) with the \(A \)-subalgebra \(A[cT, c \in q] \) of \(A[T] \) where \(T \) is an indeterminate over \(A \). Let \(c \in A \) which is integral over \(q \). Then as \(cT \) is integral over \(R \), we get \(cT \in R \); hence \(cT \in qT \); that is \(c \in q \). Thus \(q \) is integrally closed.

(3) \(\Rightarrow \) (1) Take \(x \in m \) so that \(m^a : x = q \). Then by (3.2) we find that
\[
\ell_A(m) \leq \nu_A(q) = \ell_A(A/q + xA) + \nu_A(q + xA/xA).
\]
So \(A \) is a regular local ring, since \(\nu_A(m) \leq \nu_A(q) = d \). Furthermore we get \(\ell_A(A/q + xA) = 1 \), because \(\ell_A(A/q + xA) \geq 1 \) and \(\nu_A(q + xA/xA) \geq d - 1 \). Thus \(q + xA = m \), that is \(\ell_A(q + m^2/m^2) \geq d - 1 \).

(2) \(\Rightarrow \) (1) Passing to the ring \(A[U]_{m, A[U]} \) where \(U \) is an indeterminate over \(A \), we may assume that the field \(A/m \) is infinite. Then as \(q \) is \(m \)-full by (3.3), our implication follows from \((3) \Rightarrow (1) \).

(1) \(\Rightarrow \) (3) Let \(x \in m \) with \(m = (a_1, \ldots, a_i, \ldots, a_d, x) \) for some \(1 \leq i \leq d \). Then we get
\[
\ell_A(A/q + xA) + \nu_A(q + xA/xA) = \ell_A(A/m) + \nu_A(m/xA),
\]
Recalling the exact sequence
\[
0 \rightarrow m^a : x/m^a \rightarrow A/m^a \rightarrow A/mq + xA \rightarrow 0
\]
of \(A \)-modules, we have
\[
\ell_A(m^a : x/m^a) = \ell_A(A/mq + xA). \tag{b}
\]
Notice that
\[
\ell_A(A/q + xA) + \nu_A(q + xA/xA) = \ell_A(A/q + xA) + \ell_A(q + xA/mq + xA)
= \ell_A(A/mq + xA). \tag{c}
\]
Then we get by (a) and (b) that
\[
\ell_A(m^a : x/m^a) = \ell_A(q/m^a), \tag{c}
\]
as \(\ell_A(q/m^a) = \nu_A(q) = d \). Since \(m^a : x \supseteq q \), it follows from (c) that \(m^a : x = q \). Thus \(q \)
Normality of blowing-up

is n-full.

(1) \implies (4) Let \(N = \mathfrak{m}R + R_+ \). Then as Proj \(R \) is normal (cf. (2.6)), we get that the local ring \(R_P \) is normal for any prime ideal \(P (P \neq N) \) of \(R \). On the other hand as \(R \) is a Cohen-Macaulay ring (cf. [1]), we see depth \(R_N = \dim R_N = d + 1 \geq 2 \); so the local ring \(R_N \) must be normal too. This completes the proof of (3.1).

References

5. D. Rees, Lectures at Nagoya University, 1983.
7. J. Watanabe, \(m \)-full ideals, in preprint.

Shiro GOTO
DEPARTMENT OF MATHEMATICS
NIHON UNIVERSITY

Kikumichi YAMAGISHI
DEPARTMENT OF MATHEMATICS
SCIENCE UNIVERSITY OF TOKYO